

Institut für Seeverkehrswirtschaft und Logistik

Forschung, Beratung und Know-how-Transfer in der maritimen Logistik

Gedankenspiele zu zukünftigen Bunkertreibstoffen

Dr. Nils Meyer-Larsen, DVWG Forum 2024, 06. Dezember 2024

Wo stehen wir?

Weltweit existieren ca.

62.000 Schiffe

(Stand: 1. Quartal 2023)

Stand Sommer 2024 können

1.409 Schiffe

mit alternativen Antriebsstoffen betrieben werden

(z.B. LNG, Ethan, Ammoniak, Wasserstoff, Methanol, Biokraftstoff, Nuklear)

davon Anteil LNG: 78,3 %

Stand Sommer 2024 können

1.409 Schiffe

mit alternativen Antriebsstoffen betrieben werde

(z.B. LNG, Ethan, Ammoniak, Wasserstoff, Methanol, Biokraftstoff, Nuklear)

davon Anteil LNG: 78,3 %

Im Orderbuch stehen aktuell

1.442 Schiffe

mit alternativen Antriebsstoffen

davon Anteil LNG: 65,3 %

DVWG Forum 2024, Berlin

Im Orderbuch stehen aktuell

1.442 Schiffe

mit alternativen Antriebsstoffen

davon Anteil LNG: 65,3 % FOSSIL

Von den weltweit

62.000 Schiffen

können aktuell 807 mit alternativen Antriebsstoffen (ohne LNG) betrieben werden oder sind geordert

Von den weltweit

62.00°

können aktuell (ohne LNG) betrie

ærnativen Antriebsstoffen æn oder sind geordert

Schiffe mit alternativem Treibstoff als primärer Kraftstoff (Stand: <u>1. Quartal 2023</u>)

Weltweit ca. 62.000 Schiffe, davon zu knapp 49.000 Schiffen Primärkraftstoff angegeben.

Alternative Kraftstoffe als Option:

Ethan 21 Schiffe

Wasserstoff 2 Schiffe

LNG 701 Schiffe

LPG 73 Schiffe

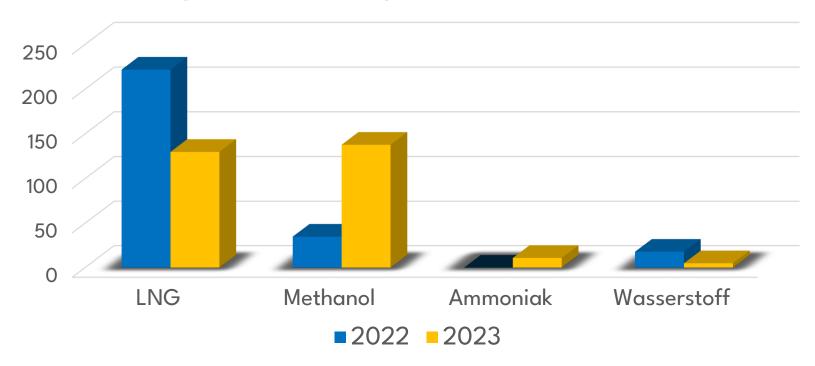
Methanol 25 Schiffe

Fast 99% der globalen Flotte fuhr 2023 mit konventionellen Kraftstoffen.

Und die alternativen Kraftstoffe sind größtenteils fossil.

Wir sind noch ganz am Anfang!

Quelle: DMZ Working Paper Aktuelle Nachfrageentwicklung nach alternativen Kraftstoffen in der Hochseeschifffahrt, Juli 2023


Wohin geht die Reise?

Entwicklung der Schiffsbestellungen von 2022 nach 2023 (Quelle: DNV)

Laut PwC-Reederstudie vom November 2023 glaubten 65% der Befragten, dass Methanol in 20 Jahren auf Langstrecken dominieren könnte.

Quelle: https://www.pwc.de/de/pressemitteilungen/2023/pwc-reederstudie-2023-klimaschutz-ist-groesste-herausforderung.html

Pressemeldungen Stand 2024

"Der dänische Schifffahrtskonzern A.P. Møller-Maersk legt noch einmal mit Neubauten nach: Auf drei Werften in Asien wurden 20 LNG-Schiffe mit insgesamt 300.000 TEU bestellt." (HANSA, 2.12.2024)

"LNG is remaining the dominant choice for alternative-fueled vessel orders in late 2024, accounting for 23 of the 27 new orders placed in November. [...] The surge in LNG orders marks a notable market shift from 2023, when methanol briefly led the alternative fuel race." (gcaptain.com, 2.12.2024)

"However, methanol's appeal has diminished significantly, with orders for methanol-powered containerships dropping from 51% of new capacity in 2023 to just 21% in 2024" (gcaptain.com, 2.12.2024)

"Maersk prüft Atomantrieb" (DVZ, 21.8.2024)

Schiffe mit alternativen Treibstoffen - Methanol

- LAURA MAERSK, ANE MAERSK, ASTRID MAERSK und weitere in Fahrt – aktuell weltweit 30 Methanol-Schiffe
- Auftragsbestand: 246 Schiffe, u.a. durch Maersk und CMA CGM geordert (Thesenpapier ISL)
- "Premiere with methanol: Maersk Halifax back in service
 [...] first large ship in the industry to be converted into a
 dual-fuel ship that can run on methanol" (hansa.news,
 21.11.24)
- "In view of the uncertainties regarding fuel availability and prices, Maersk like a number of other shipping companies has also recently turned its attention back to LNG for its ships. However, the company is apparently also sticking with methanol" (hansa.news, 21.11.24)

Quellen für grünes Methanol

- "Hapag-Lloyd has secured a deal with Goldwind, a partner in clean energy headquartered in Beijing, China, to transport 250,000 tonnes of green methanol annually. The green methanol will be a combination of bio- and e-methanol" (porttechnology.org, 29.11.2024)
- Qair baut in Le Havre eMethanol-Projekt auf, Kapazität 200.000 t/Jahr "to support the decarbonization of maritime transport" (h2-tech.com, 11.11.2024)
- European Energy will im dänischen Kassø ab Ende 2024 jährlich 32.000 t Tonnen grünes Methanol herstellen; weitere Produktion mit 100.000 t /Jahr ab 2028/29 geplant (power-to-x.de, 29.10.2024)
- Maersk vereinbart mit chinesicher Firma LONGi Lieferung von Bio-Methanol aus Stroh und Obstbaumschnitt. Damit hat Maersk insgesamt mehr als 50% des Bedarfs der Dual-fuel Methanolflotte für 2027 gesichert (worldcargonews.com, 30.10.2024)

Quellen für grünes Methanol

- "Hapag-Lloyd has secured a deal with Goldwind, a partner in clean energy headquartered in Beijing, China, to transport 250,000 tonnes of green methanol annually. The green methanol will be a combination of bio- and e-methanol" (porttechnology.org, 29.11.2024)
- Qair baut in Le Havre eMethanol-Projekt auf, Kapazität 200.000 t/Jahr "to support the decarbonization of maritime transport" (h2-tech.com, 11.11.2024)
- European Energy will im dänischen Kassø ab Ende 2024 jährlich 32.000 t Tonnen grünes Methanol herstellen; weitere Produktion mit 100.000 t /Jahr ab 2028/29 geplant (power-to-x.de, 29.10.2024)
- Maersk vereinbart mit chinesicher Firma LONGi Lieferung von Bio-Methanol aus Stroh und Obstbaumschnitt. Damit hat Maersk insgesamt mehr als 50% des Bedarfs der Dual-fuel Methanolflotte für 2027 gesichert (worldcargonews.com, 30.10.2024)

Aber:

• Ørsted stoppt Projekt "FlagshipONE" für jährlich 55.000 t eMethanol: "Zu wenig Abnehmer und zu hohe Kosten", "erhebliche Kostenlücke zwischen E-Fuels und fossilen Brennstoffen", "Fehlende Anreize der EU" (edison.media, 16.8.2024)

- ttz baut in Bremerhaven Produktion von grünem Methanol für die Uthörn des AWI auf
- Ziel: 500 kg grünes Methanol pro Tag
- Entspricht Tagesbedarf der Uthörn

www.isl.org/projekte/lpmarisynfuel

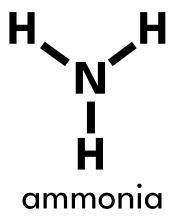
aufgrund eines Beschlusses des Deutschen Bundestages

Koordiniert durch:

Projektträger:

Schiffe mit alternativen Treibstoffen -Ammoniak

- Yara Eyde (1.300 TEU) soll ab 2026 zwischen Norwegen und Deutschland verkehren (yara.com, 30.11.23)
- Berge Bulk hat Anfang 2024 zwei 210,000 DWT "ammoniapowered" Newcastlemax-Schiffe bestellt (hansa.news, 6.3.24)
- "Seaspan Corporation has received approval in principle
 (AiP) from Lloyd's Register (LR) for its dual-fuel ammonia powered next-generation feeder ship design. The 3,100 TEU
 nominal vessel, measuring 198 metres in length [...], will use
 ammonia in its two-stroke primary propulsion engine"
 (porttechnology.org, 18.9.24)
- "World's First Ammonia-Powered Vessel Completes Maiden Voyage [...] The NH3 Kraken, a retrofitted 1957 tugboat, completed its maiden voyage on a tributary of the Hudson River" (gcaptain.com, 23.9.24)



Quellen für grünes Ammoniak

- Yara Clean Ammonia (YCA) und Bunker Holding Group haben im Sommer 2023 ein MOU zur Entwicklung eines Marktes für grünes Ammoniak als Schiffstreibstoff gezeichnet
- Yara's renewable hydrogen plant in Porsgrunn, Norwegen; "Ammonia production: 20,000 tonnes per annum" (Yara fact sheet, 06/24)
- Hygenco baut in Gopalpur, Indien Produktion für grünes Ammoniak mit geplanten 1,1 Mio t pro Jahr auf; erste Phase mit 750 t pro Tag soll 2027 starten (hydrogenindustryleaders.com, 2.12.24)

"Warum nicht Wasserstoff?" – Herausforderung Wasserstoff-Speicherung

- Druckwasserstoff (700 bar)
 volumetrische Dichte 42 kg/m³
- Flüssigwasserstoff (-253 °C)
 volumetrische Dichte von 71 kg/m³
- Kryo-komprimierter Wasserstoff (überkritisches Fluid, 300 bar, -235 °C)
 volumetrische Dichte max. 80 kg/m³
- LOHC (Benzyltoluene)
 Speicherkapazität 54 kg H₂/m³ LOHC

"Warum nicht Wasserstoff?" – Herausforderung Wasserstoff-Speicherung

1,3 KWh/1

Druckwasserstoff (700 bar) volumetrische Dichte 42 kg/m³

2,4 KWh/1

Flüssigwasserstoff (-253 °C) volumetrische Dichte von 71 kg/m³

2,7 KWh/1

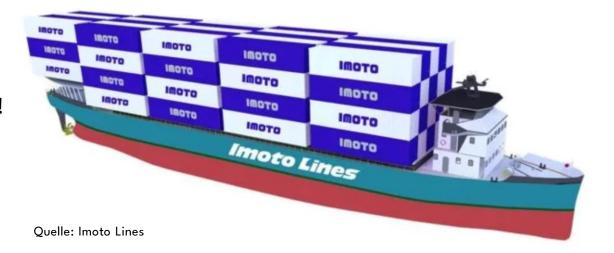
Kryo-komprimierter Wasserstoff (überkritisches Fluid, 300 bar, -235 °C) volumetrische Dichte max. 80 kg/m³

LOHC (Benzyltoluene)
Speicherkapazität 54 kg H₂/m³ LOHC

Zum Vergleich:
Diesel 9,8 kWh/l
Methanol 4,4 kWh/l
Ammoniak 3,2 kWh/l

Herausforderung Wasserstoff-Speicherung: Metallhydrid-Tanks

- Forschungsschiff "Coriolis" des Helmholtz-Zentrums HEREON speichert 30kg Wasserstoff chemisch gebunden in einem 5t-Metallhydridtank für Bordstromversorgung
- Risikoarme Speichermethode!



Elektrifizierung (batterieelektrisch)

- Imoto Lines und Marindows wollen "zero-emission" contrainer ship" entwickeln
- 81 m lang, 200 TEU
- Energiespeicher: "Japan's first exchangeable container batteries"
- Tests ab 2026 zwischen Kobe und Hiroshima

Keine Option für Großschiffe und weite Entfernungen!

Wind-assisted ship propulsion (WASP)

Institut für Seeverkehrswirtschaft und Logistik

- Diverse Ansätze, u.a. EU-Projekte
- Aktuell 29 Schiffe in Fahrt, 72 "on order"
- Routenoptimierung im Hinblick auf Windverhältnisse
- Treibstoffeinsparung: exemplarisch 8,8% (Lloyd's Register), mehr erwartet

Nukleare Treibstoffe

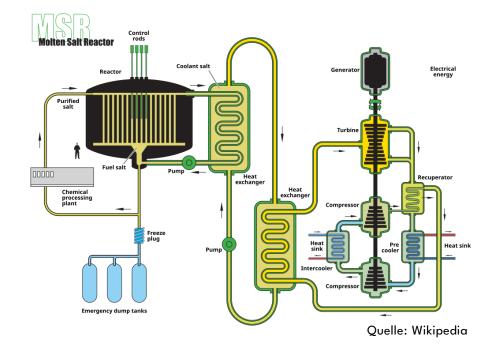
"Nuclear Maritime is happening"*

Mark Tipping, Global Power-to-X Director Lloyd's Register

Fakten:

- Hohe Energiedichte verglichen mit Diesel
- Verschiedene Beispiele, u.a.
 - Russischer Eisbrecher Lenin (1957)
 - Handelsschiff NS Savannah (1962-72)
 - Handelsschiff Otto Hahn (1968-79)
 - 13 russische Eisbrecher im Einsatz, 7 geordert
- "Refuelling schedules range from 5-8 years to 30 years"

*vgl. Lloyd's Register, Webinar - Fuel for thought: Nuclear in maritime, a zero-carbon solution for the future? vom 26.11.2024


Nukleare Treibstoffe: Technologien

Institut für Seeverkehrswirtschaft und Logistik

- Verschiedene technische Ansätze verfügbar
- Flüssigsalzreaktor ("Molten Salt Reactor" MSB) als besonders aussichtsreich eingestuft
- Kernbrennstoff liegt in Form geschmolzenen Salzes (z.B. Uranchlorid) vor
- Negativer Temperaturkoeffizient angestrebt: Temperaturerhöhung reduziert die Leistung, Kernschmelze im klassischen Sinne ausgeschlossen
- Flüssigsalzreaktoren arbeiten bei Atmosphärendruck;
 Dampfexplosion im Reaktorkern nicht möglich

Aber:

- Bei einem Testreaktor kam es zu einem Entweichen von Uran-233 in das Abgassystem
- Problem der Entsorgung schwach bis mittelstark verstrahlter Anlagenteile ähnlich wie bei herkömmlichen Uran-Reaktoren

Nukleare Treibstoffe: Technologien

eeverkehrswirtschaft

- Zitate im Webinar: "Zero emissions" "Excellent safety record"

•

- Keine Antwort auf Frage zur Security (Terrorismus, Piraterie) Aber:
 - Keine Antwort auf Frage der Entsorgung radioaktiver Abfälle Keine Antwort auf Frage zur Herkunft der Kernbrennstoffe
 - Umweltbundesamt: Nuklearenergie ist "keineswegs CO2-neutral"; bei Herstellung der Kernbrennstoffe und Endlagerung treten erhebliche
 - CO2-Emissionen auf (umweltbundesamt.de, 27.11.2019)

DVWG Forum 2024, Berlin

Quelle: Wikipedia

Fazit

Allgemein: Komplexe Lage mit unklaren Signalen

- Rückbesinnung auf LNG (und damit auf einen fossilen Treibstoff!)
- Methanol-Hype deutlich abgeebbt
- Einzelne Projekte mit Ammoniak
- Elektrische Antriebe auf kurzen Strecken denkbar
- Interessante Vorhaben zu Wind-assisted Ship Propulsion
- Wichtige Fragen zu nuklearen Antrieben noch zu klären
- Herstellung der Kraftstoffe in ausreichender Menge ungeklärt
- Große Herausforderung: Wirtschaftlichkeit!

ISL-Thesenpapier "Klimaziele der Seeschifffahrt sind kaum zu schaffen" – stay tuned!

Kontakt

Institut für Seeverkehrswirtschaft und Logistik

Dr. Nils Meyer-Larsen

Maritime Security & Hydrogen +49 421 22096-53 meyer-larsen@isl.org **ISL BREMEN**

Institut für Seeverkehrswirtschaft und Logistik Universitätsallee 11 – 13 28359 Bremen

ISL BREMERHAVEN

Institut für Seeverkehrswirtschaft und Logistik Barkhausenstraße 2 (t.i.m.e.Port II) 27568 Bremerhaven

